Global conditions in the solar corona from 2010 to 2017
نویسندگان
چکیده
Through reduction of a huge data set spanning 2010-2017, we compare mean global changes in temperature, emission measure (EM), and underlying photospheric magnetic field of the solar corona over most of the last activity cycle. The quiet coronal mean temperature rises from 1.4 to 1.8 MK, whereas EM increases by almost a factor of 50% from solar minimum to maximum. An increased high-temperature component near 3 MK at solar maximum drives the increase in quiet coronal mean temperature, whereas the bulk of the plasma remains near 1.6 MK throughout the cycle. The mean, spatially smoothed magnitude of the quiet Sun magnetic field rises from 1.6 G in 2011 to peak at 2.0 G in 2015. Active region conditions are highly variable, but their mean remains approximately constant over the cycle, although there is a consistent decrease in active region high-temperature emission (near 3 MK) between the peak of solar maximum and present. Active region mean temperature, EM, and magnetic field magnitude are highly correlated. Correlation between sunspot/active region area and quiet coronal conditions shows the important influence of decaying sunspots in driving global changes, although we find no appreciable delay between changes in active region area and quiet Sun magnetic field strength. The hot coronal contribution to extreme ultraviolet (EUV) irradiance is dominated by the quiet corona throughout most of the cycle, whereas the high variability is driven by active regions. Solar EUV irradiance cannot be predicted accurately by sunspot index alone, highlighting the need for continued measurements.
منابع مشابه
Global solar wind variations over the last four centuries
The most recent "grand minimum" of solar activity, the Maunder minimum (MM, 1650-1710), is of great interest both for understanding the solar dynamo and providing insight into possible future heliospheric conditions. Here, we use nearly 30 years of output from a data-constrained magnetohydrodynamic model of the solar corona to calibrate heliospheric reconstructions based solely on sunspot obser...
متن کاملA Fast and Accurate Global Maximum Power Point Tracking Method for Solar Strings under Partial Shading Conditions
This paper presents a model-based approach for the global maximum power point (GMPP) tracking of solar strings under partial shading conditions. In the proposed method, the GMPP voltage is estimated without any need to solve numerically the implicit and nonlinear equations of the photovoltaic (PV) string model. In contrast to the existing methods in which first the locations of all the local pe...
متن کاملبررسی تغییرات شدت در تاج خورشید طی خورشیدگرفتگی 20 مرداد 1378
An experiment to search for short-period intensity oscillations in the solar corona was conducted during the total solar eclipse of August 11, 1999 in Esfahan, Iran. The intensity in the continuum, centered about 4700 Å and with a passband having a half-width of 190 Å, was recorded at a counting rate of 5 Hz using six low-noise Hamamatsu R647 photomultiplier tubes. We recorded intensity value...
متن کاملOscillations of a Giant Solar Tornado
Solar magnetic tornadoes are known to be one of the mass and energy transport mechanisms from the lower solar atmosphere into the upper layers of the solar corona. A bright spiral structure with two arms is observed using high-cadence EUV images of 171, 193 and 304 Ǻ channels of Atmospheric Imaging Assembly (AIA) aboard the Solar Dynamics Observatory (SDO) on 10th of July 2011 for three hours. ...
متن کاملSimulated kinetic effects of the corona and solar cycle on high altitude ion transport at Mars
[1] We present results from the Mars Test Particle (MTP) simulation as part of a community-wide model comparison in order to quantify the role of different neutral atmospheric conditions in planetary ion transport and escape. This study examines the effects of individual ion motion by simulating particle trajectories for three cases: solar minimum without the neutral corona, solar minimum with ...
متن کامل